Applied linguistics and mathematics education: more than words and numbers
Richard Barwell, Constant Leung and Brian Street
University of Bristol, King’s College London, King’s College London

The preceding set of papers has explored various aspects of the role of language in mathematics education. The papers reflect the work of individual contributors. An important part of our collaboration, however, has been the conversation between us. This paper reflects aspects of that conversation, as we draw together some of the themes that have emerged during our work. In particular, we discuss some of the implications of our analyses for theory, policy, practice and inter-disciplinarity in mathematics education and applied linguistics.

In the papers in this collection, we have explored aspects of the role of language in mathematics education. We have moved beyond simplistic notions of mathematics being ‘language free’, or alternatively and conversely, of mathematics being a language. Drawing on the two data extracts, we have considered a number of distinct, but related aspects of mathematics classroom interaction, including the role of ambiguity, the role of definitions and the learning of mathematical vocabulary. In this paper, we use these explorations to consider wider issues concerning the nature of academic mathematical discourse (or what Street terms ‘academic numeracies’) and the relationship between the teaching and learning of mathematics and students’ induction into mathematical discourses. What can we say, for example, about the nature of educational policy, particularly in relation to the role of guidance for teachers? What can we say about the role of theory in understanding classroom interaction? This paper also addresses a second issue, concerning the nature of interdisciplinary collaboration. How has our collaboration gone beyond the individual disciplines we customarily inhabit?
On theory

In our analyses, we have drawn on various theoretical perspectives on language in context: Halliday’s Systemic Functional Linguistics, ‘New Literacy Studies’ and discursive approaches to vocabulary learning and meaning making. These different perspectives share the position, now common in ‘social’ linguistics, that it is not sufficient to attend to word level, sentence level or even text level accounts of meaning making. A more ‘social’ approach suggests that much work in making meaning occurs in more ‘hidden’ processes, partly organised or constituted by social action, social structure or ideology. This approach involves a shift in theoretical orientation to language, literacy and mathematics, seeing them as less essentialist, less decontextualised, more fluid, ‘fuzzy’ and shifting with context. Mathematics, rather than being seen as reified, abstract knowledge, is seen as constructed, or reconstructed, through social practice (Baker et al. 2003). Our analyses all highlight the nature and use of some of these social mathematical practices in one mathematics classroom. From this perspective, many ‘problems’, such as the notion of ‘ambiguity’, come to be seen instead as a resource, a resource implicitly exploited by the teacher and her students. We are not attempting to generalise empirically from our few examples, but rather to accentuate and synthesise key points underlying our understanding of the principles and theoretical assumptions regarding language and learning and their relationship to mathematics. Underpinning these accounts lie significant recent theoretical developments in language studies that may sometimes remain hidden in the debates over policy (see below) that currently dominate UK schooling. Hovering beneath this argument about language, however, is a further theoretical domain that is touched upon but perhaps less fully developed, namely that of learning. Leung, for instance, notes theories of language acquisition in his account, as he asks the question
‘what does the learning of technical mathematics vocabulary and its associated
category/s entail?’ Similarly, Barwell relates his analysis of ‘ambiguity practices’ in
the dimensions extract to the participants’ exploring and learning about dimension as
a mathematical concept. Indeed recent developments in learning theory that
complement the social turn in language theory provide an implicit backdrop to our
analyses. Relevant ideas include Rogoff’s (1990) account of ‘participation’, Lave’s
(1988) account of ‘situated learning’ or Lave and Wenger’s (1991) notion of
‘communities of practice’, all of which lurk beneath the surface of the accounts given
here of the classroom discussion of dimension. The papers represent, then, accounts
of current approaches to language and to learning as they relate to mathematics in
school and offer a challenge to those that dominate much policy at present, as we
indicate below.

On policy

Official curriculum guidance and advice are in some sense hybrid entities in Britain.
On the one hand they carry the weight of the highest public professional authority and
the force of a quasi-statutory instrument, especially when they are designed to support
particular policy initiatives and associated national curricula. Once promulgated,
traces of these pronouncements can be found in the fabric of professional discourse
and practice – in school inspection menus, professional development literature,
teaching materials, and above all, in the ways teachers think about and talk about their
work. On the other hand, teachers have seen a rapid succession of policy statements,
curriculum specifications and guidance on curriculum priorities and teaching
approaches in the past fifteen years. Each generation of such documents tends to
promote an initiative/s that claims to ‘solve’ or, at any rate ‘reduce’ a perceived
problem/s linked to existing curriculum and teaching provision. Under such circumstances, we feel that the value of any curriculum guidance and advice should be gauged within a wider policy context and, more importantly, against the backdrop of relevant research.

The guidance and advice on mathematical vocabulary, the subject of this discussion, has appeared at a time when there is a good deal of official privileging of subject content (over process or exploration). The emphasis on learning formal subject vocabulary is not necessarily directly associated with any particular teaching methodology but it does chime in quite well with the general feel of the policy position that learning in school is primarily about learning subject content. Formal subject vocabulary is presented as part of the desired content. In this collection, we have, by drawing on a number of different disciplinary perspectives and research traditions, demonstrated that:

(a) formal mathematical vocabulary is not a set of self-evident factually objective terms that transcend debate or even controversy;
(b) the doing of mathematics in school clearly goes beyond learning formal mathematical vocabulary;
(c) learning, more specifically participating in learning activities, involves the use of both formal and informal language.

Seen in this light, the particular example of guidance and advice we have discussed should be regarded as a useful reminder or an amplification of one aspect of a much wider mathematics curriculum. Like the many other policy emphases that have come (and disappeared) before it, this particular example can be seen as the latest addition
to a long series of educational policy pronouncements that implicitly impose particular perspectives on language, learning and teaching on individual subjects such as mathematics. We feel it is important that such perspectives are exposed, explored and challenged.

On inter-disciplinarity

Our collaboration has been between researchers working in two different broad academic fields, those of applied linguistics and mathematics education. Each of these disciplines has its community, its texts, its journals and conferences. Linguists have shown occasional interest in mathematical discourse (e.g. Halliday, 1978). A part of the mathematics education community has long been interested in linguistic issues and has drawn on several approaches developed by applied linguists (see the introduction to this set of papers for a brief overview). There has, however, been little interaction between the two communities. Over the past two years, we have worked on joint presentations and discussions at conferences in both communities, as well as the present collection of papers. What has this inter-disciplinarity added to the development of our ideas?

In general terms, each discipline has raised questions and offered insights and ways of addressing questions raised by the other. Thus, for example, the mathematics educators highlight one student’s statement, ‘there’s no such thing as a one dimensional…’ (turn 46) as mathematically significant, prompting applied linguists to consider, in terms of the language practices of the classroom, how such a statement comes about (Street, this volume). Similarly, a linguistic analysis of changes in interaction patterns (Leung, this volume), leads mathematics educators to explore how
these changes relate to the nature of the mathematics being discussed (Barwell, this volume). Clearly, our analyses benefit from the perspectives of the two disciplines. An analysis of the role of definitions (Morgan, this volume), for example, gains from both mathematics education insider perspectives and outsider perspectives. This interaction between the two disciplines is more than a case of applied linguistics providing tools of analysis for mathematics education. Equally, it is more than a case of mathematics education providing a little detail to help the linguists make sense of the data. Members of any academic community tend to see and question particular issues, those which are valued and salient within their discipline. By working together, we have broadened the scope of our inquiry and see more than any one perspective makes visible. This is not to say that any one perspective is better, or that we need to synthesise our different approaches into something new. Rather, we argue that the diversity of perspectives we have employed have enriched our findings.

In conclusion

We have argued that doing and learning mathematics and ‘doing’ and learning language are social activities. Language is about more than words; mathematics is about more than numbers. We have shown, furthermore, how a view of language as social practice is inseparable from a view of mathematics as social practice. As the participants in the Dimensions extract explore the language of dimension, so they explore the mathematics. Equally, as they explore mathematical concepts, so they must explore and develop a language with which to pursue their exploration. The extract shows in microcosm, the development of a part of the discourse of mathematics within a particular community of practice co-incident with the development of mathematical ways of thinking, knowing and understanding. Aspects
of the participants’ learning and aspects of their ways of knowing mathematical principles, however, remain ‘hidden’. The explicit statements about learning and about language that frame schooled learning in general and ‘academic numeracies’ in particular, only concern certain limited features of learning and knowing. Our theoretical and analytic accounts are all attempts to make visible aspects of the more implicit processes through which learning and knowing come about. In rendering the implicit more explicit, we believe we can contribute to the learning, not only of pupils, but also of teachers, textbook writers and policy makers. We hope that our analyses, in revealing some of the hidden dimensions of learning and knowing, offer practitioners and policy-makers opportunities to develop their practice, through reflecting on what counts as knowing, both in terms of children’s learning in school and of their own ways of knowing.

